EFFECT OF SUGARBEET PLANT SPACING UNIFORMITY ON SUGAR PRODUCTION IN THE RED RIVER VALLEY OF THE NORTH

J.F. GILES and N.R. CATTANACH

Department of Soil Science, North Dakota State University, Fargo, North Dakota, USA

ABSTRACT

Increasing ground speed of a MaxEmerge 2 planter results in non-uniform plant spacing. Field studies were conducted in 2001 and 2002 to evaluate the effect of sugarbeet within-row space uniformity on sugar production in the soils of the Red River Valley. Minimum build-up and pellet seed types planted at ground speeds of 1.8, 2.2, 2.7 and 3.1 ms¹ were used to establish non-uniform plant spacing in these studies. Plant space distribution was determined at the 2 to 4 leaf stage and root yield and extractable sucrose were measured at harvest. Uniformity of plant spacing decreased with increasing ground speed, regardless of seed type. Recoverable sugar production was reduced with increasing ground speed.

INTRODUCTION

Uniform spacing of sugarbeet (Beta vulgaris L.) plants is recommended to maximize light interception and reduce weed competition in order to maximize production of sugar. With the rapid changes in soil moisture conditions and a very short time period for planting in during the early spring, there is a desire among sugarbeet growers to increase planter ground speed. Results from planter test stand grease belts have shown decrease in uniformity of seed spacing with increasing ground speeds. The objectives of this study were to determine (1) the effect of increasing planter ground speed on sugarbeet plant spacing in the field and (2) the effect of plant spacing on sugar production.

MATERIALS AND METHODS

Field experiments were established on Bearden silty clay loam (Fine-silty, mixed, super active, frigid, Aeric Calciaquoll) near Glyndon, MN in 2001 and 2002. The experiment was arranged in a randomized complete block design with six replications. Individual treatment plots measured 3.3 m wide and 9.1 m long. Soil nitrogen levels were adjusted with fertilizer to approximately 145 kg ha⁻¹ of available residual soil test plus added fertilizer N.

Sugarbeet, Crystal 9581, was planted May 25, 2001 and May 1, 2002 with a 6-row John Deere MaxEmerge 2 at ground speeds of 1.8, 2.2, 2.7, and 3.1 m s⁻¹. Small minimum build-up and MiniPellet (2M) seed were used both years at each
of the ground speeds. Sugarbeet was placed 3.2 cm deep with a 14 cm in-row
spacing in 2001 and a 13.3 cm spacing in 2002. A 56 cm row spacing was
used. Counter was surfaced band applied at 13.3 kg ha⁻¹ and incorporated with
chain at planting. The distance between sugarbeet plants was determined to the
nearest 1.2 cm at the two to four leaf stage of growth. Post emergence
herbicides, cultivation and hand labor was used as needed for weed control.
Two applications each of Eminent and Super Tin were applied for Cercospora
leafspot control.

Sugarbeet were harvested the last week of September each year. Plant top
material was removed with an Alloway 3-drum flail at a ground speed of 3.1 m s⁻¹.
The middle two rows of each 6 row plot were harvested. Yield determinations
were made and quality analysis performed at American Crystal Sugar Quality
Tare Lab, East Grand Forks, MN.

RESULTS AND DISCUSSION

The uniformity of sugarbeet plant spacing was decreased with increasing planter
ground speed (Fig. 1-4). Percent of total number of plants at the target seed
spacing was reduced more with increasing ground speed in 2001 with MiniPellet
seed and in 2002 with both seed types. Occurrence of plants with in 2.4 or 4.8
cm of each other is more common with the minimum build-up seed. The recoverable sugar production was higher in 2001 (Table 1) than that of
2002 (Table 2), even though planting occurred earlier in 2002. Below normal
temperatures experienced in May 2002 delayed emergence and growth of
sugarbeet in to early June. Differences between seed types were not
statistically significant in either year, thus speed means are shown in the tables.
Although statistical analyses do not show significant differences in the harvest
parameters, a decrease in net sucrose percentage, root yield, extractable sugar,
and harvest population with increasing ground speed is shown in both years.
Some of this decrease is due to the inability to completely remove top growth
material from the crown of sugarbeet that is in close proximity to other
sugarbeet, causing a lower net sucrose. The competition between these close
sugarbeet plants also reduces the number of harvestable roots, thus decreasing
root yield. The reduction in gross return per ton of $0.98 and $1.25, and $30.76
and $35.20 ha⁻¹, as planter speed increases from 1.8 to 3.1 m s⁻¹, in 2001 and
2002 respectively, can have a great impact on the cash flow of an individual
grower.

CONCLUSION

Increasing planter ground speed caused non-uniformity in sugarbeet plant
spacing. As a result of this irregular plant spacing, sugar production decreased
due petioles remaining on the crown following flailing and the competition of
close sugarbeet plants to obtain size sufficient for harvest. Using lower ground
speed during planting is recommended.
Figure 1. Effect of planter ground speed on sugar beet plant spacing with minimum buildup seed at target spacing of 14 cm, 2001.

Figure 2. Effect of planter ground speed on sugar beet plant spacing with MiniPellet seed at target spacing of 14 cm, 2001.
Figure 3. Effect of planter ground speed on sugarbeet plant spacing with minimum buildup seed at target spacing of 13.3 cm, 2002.

![Graph](image)

Figure 4. Effect of planter ground speed on sugarbeet plant spacing with MiniPellet seed at target spacing of 13.3 cm, 2002.

![Graph](image)
Table 1. Effect of planter ground speed on net sucrose percentage, root yields, recoverable sugar production, harvest population and gross return, 2001.

<table>
<thead>
<tr>
<th>PLANTER SPEED (m s$^{-1}$)</th>
<th>Net Sucrose (%)</th>
<th>Root Yield (t/ha)</th>
<th>Ext. Sugar yield (t/ha)</th>
<th>Harvest Population (beets/30.4m)</th>
<th>Gross Return ($/t)</th>
<th>Gross Return ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>14.95</td>
<td>53.1</td>
<td>7.94</td>
<td>153</td>
<td>34.47</td>
<td>331</td>
</tr>
<tr>
<td>2.2</td>
<td>14.81</td>
<td>52.6</td>
<td>7.80</td>
<td>148</td>
<td>33.85</td>
<td>322</td>
</tr>
<tr>
<td>2.7</td>
<td>14.96</td>
<td>51.1</td>
<td>7.63</td>
<td>148</td>
<td>34.51</td>
<td>322</td>
</tr>
<tr>
<td>3.1</td>
<td>14.42</td>
<td>51.2</td>
<td>7.44</td>
<td>144</td>
<td>32.04</td>
<td>300</td>
</tr>
</tbody>
</table>

LSD (.05) ns ns ns ns ns ns

Table 2. Effect of planter ground speed on net sucrose percentage, root yields, recoverable sugar production, harvest population and gross return, 2002.

<table>
<thead>
<tr>
<th>PLANTER SPEED (m s$^{-1}$)</th>
<th>Net Sucrose (%)</th>
<th>Root Yield (t/ha)</th>
<th>Ext. Sugar yield (t/ha)</th>
<th>Harvest Population (beets/30.4m)</th>
<th>Gross Return ($/t)</th>
<th>Gross Return ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>14.15</td>
<td>45.3</td>
<td>6.40</td>
<td>151</td>
<td>30.80</td>
<td>252</td>
</tr>
<tr>
<td>2.2</td>
<td>14.13</td>
<td>45.5</td>
<td>6.44</td>
<td>157</td>
<td>30.72</td>
<td>254</td>
</tr>
<tr>
<td>2.7</td>
<td>13.77</td>
<td>44.8</td>
<td>6.19</td>
<td>145</td>
<td>29.02</td>
<td>237</td>
</tr>
<tr>
<td>3.1</td>
<td>13.47</td>
<td>43.0</td>
<td>5.81</td>
<td>129</td>
<td>27.70</td>
<td>217</td>
</tr>
</tbody>
</table>

LSD (.05) .64 ns ns 14 2.94 ns

1st joint IIRB-ASSBT Congress, 26th Feb.-1st March 2003, San Antonio (USA)